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In optical transport networks, signal lightpaths between two terminal nodes can be different due to current network 
conditions. Thus the transmission distance and accumulated dispersion in the lightpath cannot be predicted. Therefore, the 
adaptive compensation of dynamic dispersion is necessary in such networks to enable flexible routing and switching. In this 
paper, we present a detailed analysis on the adaptive dispersion compensation using the least-mean-square (LMS) 
algorithm in coherent optical communication networks. It is found that the variable-step-size LMS equalizer can achieve the 
same performance with a lower complexity, compared to the traditional LMS algorithm. 
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1. Introduction 
 

The performance of high speed optical fiber networks 

is significantly affected by system impairments from 

chromatic dispersion (CD), polarizat ion mode dispersion 

(PMD), laser phase noise, and fiber nonlinearities [1-14]. 

Due to the high trans mission spectral efficiency and the 

robust tolerance to fiber nonlinearit ies, coherent optical 

detection employing advanced modulation formats and 

digital signal processing (DSP) has become one of the 

most promising solutions for the next generation of high 

speed optical fiber networks [15-20]. Since both the 

amplitude and the phase information from the received 

signal can be extracted using coherent optical detection, 

transmission impairments such as those above can be 

compensated or mitigated effectively using powerful DSP 

algorithms [21-33]. Chromat ic dispersion can be well 

compensated and equalized using time-domain and 

frequency-domain d igital filters  [21-24], which have 

become the most promising alternative approaches to 

dispersion compensating fibers (DCFs) [1,2]. These 

implementations lead to a dramatic reduction in the 

complexity and costs, as well as increased tolerance to 

fiber nonlinearit ies, for high-capacity optical fiber 

transmission networks. 

To date, a number of digital equalizers have been 

implemented based on a fixed amount of fiber dispersion 

to realize static compensation of inter-symbol interference 

(ISI), where an accurate knowledge of chromatic 

dispersion in the transmission link is critically required  

[21-24]. However, in switched optical fiber networks, the 

signal lightpath between two terminal nodes can change 

over time accord ing to different network conditions, where 

the transmission distance and the accumulated dispersion 

in the lightpath cannot be predicted in advance. Therefore, 

adaptive compensation for the chromatic dispersion in  

such optical transmission networks should be given 

serious consideration. Recently, adaptive CD equalization  

in dynamically switched optical networks has attracted 

some research interest, and several approaches such as the 

least-mean-square (LMS) algorithm, the constant modulus 

algorithm (CMA), the delay tap sampling technique, the 

overlap frequency domain equalizat ion, and the auto-

correlation of signal power waveform have been 

investigated to enable a flexible routing and switching in 

such optical fiber networks [34-38]. Among these 

methods, the time-domain LMS equalizer can deliver a  

relatively simple specificat ion and a large dynamic range, 

as well as a good tolerance to small laser phase noise, and 

thus becomes a very promising solution for the adaptive 

CD electronic equalization in dynamically switched and 

routed optical fiber networks [37-40]. 

In this paper, we present a detailed analysis of 

adaptive chromatic dispersion compensation using the 

LMS algorithm, in coherent optical fiber t ransmission 

networks. Numerical simulations have been carried out in  

the dual-polarization quadrature phase shift key ing (DP-

QPSK) coherent transmission system, based on the VPI 

and Matlab platforms [41,42]. The influence of step size in  

the LMS adaptive equalizat ion for compensating the 

chromatic d ispersion is investigated, and the impact of 

step size on the tap weight convergence in the LMS 

equalizer is also analyzed in detail. The LMS filter shows 

a better CD compensation performance by using a smaller 

step size, but this will result in a slower iterative 

computation to achieve the convergence of the tap 

weights. To solve this contradiction, a variab le-step-size 

LMS (VSS-LMS) algorithm is further proposed to realize 
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the dynamic equalization of the chromat ic dispersion in 

coherent optical fiber networks. The performance of the 

VSS-LMS for adaptive CD compensation is analyzed and 

compared to the trad itional LMS filter, and the required  

number of taps and the distribution of converged tap 

weights in both equalizers for a  specific fiber dispersion 

profile are also investigated. It is  found that the VSS-LMS 

adaptive equalizer can give an optimum CD equalization  

performance compared to the traditional LMS algorithm, 

where a good compromise between the CD compensation 

performance and the converging speed of the tap weights 

can be obtained. Therefore, the VSS-LMS equalization  

can achieve an optimum balance between the CD 

equalization performance and the computational 

complexity, where the best CD compensation with a low 

complexity can be realized. 

 

 

2. Principle of least-mean-square based  
    adaptive dispersion compensation 

 

In this section, the principle of the traditional LMS 

algorithm and the variable-step-size LMS algorithm are 

described, and the influence of step size on the update and 

the convergence of the tap weights are also discussed in 

detail. 

 

2.1. Structure of least-mean-square based adaptive  

       equalizers 

 

The schematic of the adaptive equalizer based on the 

LMS algorithm with a number of tap weights, N, is 

illustrated in Fig. 1, where T is the sampling period, Wi  

(i=1,2,…,N ) represents the tap weight coefficient in the 

LMS based equalizer, xi is the input sample sequence, y is 

the equalized  output sample, d is the desired output 

sample, and e is the estimat ion error between the output y 

and the desired output d.  

 

 
 

Fig. 1. Block diagram of the LMS algorithm based  
adaptive equalizer for dispersion compensation 

 

 

As shown in Fig. 1, the adaptive equalizer includes a 

tapped delay line for storing the data samples from the 

input signal sequence. During each sample period, the 

adaptive equalizer calculates the convolution between the 

tap weights in the delay line and the input samples, and 

then the tap weights are updated for the calculation in the 

next sample period. The tap weights are updated according 

to the estimation error between the output signal and the 

desired signal, and the speed of the update depends on the 

step size parameter. Meanwhile, the adaptive equalizer can  

be applied in the decision-direct (DD) or the training  

symbol modes; here, the DD, update option is employed in  

our analysis and numerical simulations. 

 

 

2.2. Principle of LMS adaptive algorithm 

 

The LMS equalizer is a branch of the family  of 

adaptive algorithms, which is designed by finding the filter 

coefficients to produce the least mean square value of the 

error signal (the difference between the desired  output and 

the actual output signal). The LMS algorithm is an 

iterative adaptive method which can be applied in highly  

time-vary ing signal environments. It is a stochastic 

gradient descent approach, since the tap weights in the 

LMS filter are only accommodated based on the current 

estimation error. The trad itional LMS algorithm 

incorporates an iterative procedure which  makes 

successive corrections to the tap weight vector in  the 

negative direction of the gradient vector which eventually  

results in a minimum mean squared error. The equalized  

output signal and the tap weights vector of the LMS 

adaptive equalizer can be expressed as follows [38-40], 

     nxnwny
H

LMS



                                 (1) 

       nenxnwnw LMSLMSLMSLMS




 1      (2) 

         nyndne LMSLMS                            (3) 

where  nx


 is the vector of the complex input signal, y(n) 

is the equalized complex output signal,  nwLMS



 is the 

vector of the complex tap weights, d(n) is the desired 

output symbol, e(n) is the estimation erro r between the 

output signal y(n) and the desired symbol d(n), μLMS is the 

step size parameter which controls the convergence 

characteristics of the LMS algorithm, H represents the 

Hermitian  transform, and * means the conjugate operation. 

The tap weight vector  nw


 is firstly initiated with an 

arbitrary value  0


w  at n=0, and then is updated in a 

sample-by-sample (or symbol-by-symbol) iterative manner 

to achieve the eventual convergence, when the estimation  

error e(n) approaches zero. 

In order to guarantee the convergence of  nw


 in the 

LMS equalizer, the step size parameter μLMS in the 

adaptive filter needs to satisfy a condition of 0 < μLMS < 

1/λmax, where λmax is the largest eigenvalue of the 

correlation matrix    nxnxR
H

  [38-40]. The 

convergence speed of the algorithm is inversely 
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proportional to the eigenvalue spread of the correlation  

matrix R. The convergence of the LMS tap weights will be 

slow, when the eigenvalues are widely spread. The 

eigenvalue spread of the correlation matrix R is evaluated 

by calculating the ratio  between the largest eigenvalue and 

the smallest eigenvalue. The LMS algorithm will converge 

quite slowly, when the step size μLMS is very small. One 

the other hand, the LMS algorithm will converge faster for 

a larger value of step size μLMS. Howerver, the LMS 

algorithm can be less stable since sometimes the step size 

may exceed 1/λmax. 

 

 

2.3. Principle of variable-step-size LMS adaptive  

       algorithm 

 

Generally, the tradit ional LMS algorithm is quite 

robust for dispersion compensation and requires only a 

small computational effort. However, the accommodation  

of the step size will impact both the convergence speed 

and the residual error in the traditional LMS equalizer. The 

performance of the traditional LMS algorithm can be 

enhanced and optimized, if the step size of this adaptive 

equalizer can be ad justed properly. For the best situation, a 

larger step size is applied at the beginning of the process  to 

accelerate the convergence speed, and a smaller step size 

is applied after approximate convergence to generate the 

smallest residual error. Correspondingly, the variab le-step-

size LMS algorithm has been developed to improve the 

performance of the trad itional LMS algorithm in  terms of 

the convergence speed and residual error level [39,40,43-

45]. The step size parameter in the VSS-LMS algorithm 

changes with the variation of the mean square error, which  

allows the adaptive equalizer to track the changes in the 

transmission system as well as to produce a small steady 

residual error. The equalized output signal y(n) and the tap 

weights vector of the variab le-step-size LMS adaptive 

filter can be expressed as the following equations [39,40], 

 

     nxnwny
H

LMSVSS







                             (4)  

   

     nenxn

nwnw

LMSVSSLMSVSS

LMSVSSLMSVSS























1
   (5) 

     nenn LMSVSSLMSVSSLMSVSS

21         (6) 

        nyndne LMSVSSLMSVSS  
               (7) 

 

where  nx


 is the vector of the complex input signal, y(n) 

is the equalized output signal using the VSS-LMS filter, 

 nw LMSVSS



 is the vector of the complex tap weights, d(n) 

is the desired output symbol, e(n) represents the estimation  

error between the output signal y(n) and the desired 

symbol d(n), and μ (n) is the step size coefficient of the 

VSS-LMS algorithm for adjusting the convergence 

properties and the residual error, and is updated with the 

variation of the estimated error e(n). The parameters α  and 

γ are the coefficients for controlling the step size to be 

updated with the change of estimation error e(n), and the 

range of the parameters are 0 < α < 1 and γ > 0 0 . The 

convergence speed of the VSS-LMS adaptive algorithm 

can be accommodated by choosing different values for the 

energy attenuation factor α. 

The step size μ(n) is always positive and is controlled 

by the size o f the estimated error and the parameters  α  and 

γ, according to Eq. (6). A typical value of α=0.97 was 

found to work well in  our numerical simulations, and the 

parameter γ was usually chosen as γ=4.8×10
-4

. In general, 

a large estimated erro r increases the step size to provide 

faster tracking. When the estimated error decreases, the 

step size will be decreased accordingly to reduce the mis-

adjustment in estimation [38-40]. Compared to the 

traditional LMS algorithm, the VSS-LMS algorithm can  

give an improved performance at a cost of only four more 

multiplications or divisions in each iteration. 

 

 

3. Implementation of DP-QPSK numerical  

    transmission system 

 

As illustrated in Fig. 2, a transmission arrangement 

comprising a 28-Gbaud DP-QPSK coherent optical 

communicat ion system was numerically implemented 

using the VPI and Matlab platforms. A ll the simulations 

were carried out based on the nonlinear Schrödinger 

equation (NLSE) using the split-step Fourier solution. In  

the transmitter, the pseudo random b it sequence (PRBS) 

data from the 28-Gbit/s pattern generators were  modulated 

into two orthogonally polarized QPSK optical signals by 

using Mach-Zehnder modulators  and a polarizat ion beam 

splitter (PBS). The orthogonally polarized signals  were 

then fed into a standard single mode fiber (SSMF) 

transmission channel by using a polarizat ion beam 

combiner to fo rm the 28-Gbaud DP-QPSK optical signal. 

At the receiver end, the received optical signals were  

mixed with the local oscillator (LO) laser to be 

demodulated the baseband signals. The signals were  

detected by the photodiodes to become electrical signals 

and then digitalized by the analog-to-digital convertors 

(ADCs) at twice the symbol rate. Using DSP, system 

impairments in the transmission channel could be 

equalized and compensated using diverse digital filters. In  

this work, we neglected attenuation, polarizat ion mode 

dispersion, laser phase noise, and fiber nonlinearities, 

since the investigation was only focused on the chromatic  

dispersion equalization. The b it error rate was evaluated 

based on 2
18

 bits, with a PRBS pattern length of 2
15

-1. 

 

http://www.schrodinger.com/
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Fig. 2. Schematic of the 28-Gbaud DP-QPSK coherent 

optical fiber transmission system. PBC: polarization 

beam combiner, OBPF: optical band-pass filter, LPF: 
low-pass filter 

 

 

4. Simulation results 
 

To investigate the performance of VSS-LMS filter, 

the compensation of chromatic dispersion from a SSMF 

with a CD coefficient D = 16 ps/km/nm were numerically  

assessed, and the results  compared to the traditional LMS 

adaptive filter. The tap weights were  updated iteratively in  

both the traditional LMS algorithm and the variab le-step-

size LMS algorithm; here we main ly focused on the 

converged tap weights in the two equalizers. The 

converged tap weights of the LMS adaptive filter with 37 

taps and step size of 0.1 for compensating the chromatic 

dispersion in the 60 km fiber are illustrated in Fig. 3. It can  

be seen that in the LMS adaptive filter, the central tap 

weights take more dominant roles in the chromatic 

dispersion equalization in all the tap weights magnitude, 

real part and imaginary part  diagrams. For a fixed  fiber 

dispersion, the tap weights in LMS adaptive filter 

approach zero, when the corresponding tap order exceeds 

a certain value, and this value indicates the least required  

taps number for compensating the chromatic dispersion 

effectively. This also illustrates the self-optimization  

characteristic of the least-mean-square adaptive algorithm. 

It could be seen from Fig. 3 that the required minimum 

number of taps in  the LMS equalizer for equalizing 60 km 

fiber dispersion is 23. 

 

(a)  

(b)  

(c)  
 

Fig. 3. Tap weights of LMS adaptive filter (Tap orders 

are centralized) for 60 km fiber, (a) magnitudes of tap 

weights in LMS filter, (b) real parts of tap weights in 

LMS filter, (c) imaginary parts of tap weights in LMS 
filter 

 

 

The performance of CD compensation employing the 

LMS adaptive filter with step size value μ = 0.1 using 9 

taps for 20 km fiber dispersion and 2305 taps for 6000 km 

fiber dispersion is  shown in Fig. 4. It could be seen from 

the figure that the two CD equalizat ion results have little  

penalty compared with the back-to-back measurement 

when the fiber loss is neglected in the simulation work. 

Simulation results of CD compensation employing 

LMS adaptive filter with different step size values using 

401 taps for 1500 km fiber dispersion are shown in Fig. 5. 

It can be seen from this figure  that the CD compensation 

results are better as the step size decreases , while a smaller 

step size will lead to a slower convergence speed. Also, it 

is observed that the BER performance is very similar , 

when the step size value is below μ = 0.1, and the BER 

behavior become worse when the step size increases above 

μ = 0.1. Therefore, the step size in the LMS adaptive 
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equalizer was here usually  selected as μ = 0.1 to obtain the 

optimization. 
 

 
Fig. 4. Chromatic dispersion compensation using LMS  

filter with a step size of 0.1 (neglecting fiber loss) 
 

 
 

Fig. 5. Chromatic dispersion compensation using LMS  
filter with different step sizes (neglecting fiber loss) 

 

 

The converged tap weights of the variable-step-size 

LMS adaptive filter for 60 km fiber dispersion with 37 

taps and step size that varied between 0.06 and 0.6 are 

illustrated in Fig. 6. Again, it is seen that in the variable -

step-size LMS adaptive filter, the central tap weights also 

take more dominant roles in the CD equalizat ion in all the 

tap weights diagrams. It could also be found that the 

converged tap weights in the variable-step-size LMS filter 

vary consistently with the LMS adaptive filter tap weights, 

whereas the tap weights magnitudes in the variable-step-

size LMS equalize r are larger than the tap weights 

magnitudes in the LMS equalizer. 

To optimize the convergence speed and the 

compensation effect, the variable-step-size LMS algorithm 

was introduced and employed in the adaptive filter. The 

performance of the CD compensation for 60 km fiber 

dispersion using the variable-step-size LMS equalizer 

compared with the LMS equalizer is  illustrated in Fig. 7. 

The VLMS adaptive equalizer could achieve the same CD 

compensation performance with the LMS adaptive 

equalizer, meanwhile, the VLMS filter uses step sizes 

varying from 0.06 to 0.6 that accelerates the algorithm 

converging speed. 

(a)  

(b)  

(c)  
Fig. 6. Tap weights of variable-step-size LMS adaptive 

filter (tap orders are centralized), (a) magnitudes of tap 

weights in VSS-LMS filter, (b) real parts of tap weights in 

VSS-LMS filter, (c) imaginary parts of tap weights in 
VSS-LMS filter 

 

 
Fig. 7. CD compensation using traditional LMS and  

variable-step-size LMS adaptive filters (neglecting 

 fiber loss) 
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5. Discussions 

 

In above analyses and discussions, only the chromatic 

dispersion was taken into consideration. Actually, the 

PMD equalization can also be performed using the LMS 

algorithm. Thus the combination of CD equalizer and 

PMD equalizer can be implemented simultaneously using 

the variable-step-size LMS algorithm. 

Meanwhile, the CMA algorithm can also be used for 

the adaptive chromat ic d ispersion compensation, while the 

LMS algorithm is also tolerant to small amounts of laser 

phase noise [37]. However, for larger phase noise or 

equalization enhanced phase noise [10, 28], the CMA 

algorithm is more effective, since the performance of the 

LMS algorithm will be significantly degraded by the large 

phase noise. It is also worth noting that both LMS 

(including VSS-LMS) and CMA algorithms can be 

applied in communication systems using higher-order 

modulation formats [26,46-48], where the both approaches 

can be operated in the decision-direct mode. 

In addition, in DSP based coherent communicat ion 

systems the laser phase noise will interact with the 

dispersion compensation module to introduce an effect of 

equalization enhanced phase noise (EEPN) [49,50-52]. In  

the LMS adaptive dispersion equalization, both transmitter 

laser phase noise and LO laser phase noise will interact 

with the dispersion equalization module [53,54], and the 

system performance is equally influenced by the 

equalization enhanced transmitter phase noise (EETxPN) 

and the equalization enhanced LO phase noise (EELOPN). 

 

 

6. Conclusions 
 

A variable-step-size least mean square equalizer has 

been developed to compensate CD in a  112-Gbit/s PDM-

QPSK coherent optical transmission system. The variable -

step-size LMS adaptive filter can make a compromise 

between the algorithm convergence speed and the CD 

compensation performance compared with tradit ional 

LMS adaptive filter. The tap weights in the tradit ional 

LMS filter and the VSS-LMS filter have been analyzed, 

and the CD compensation effects using the two adaptive 

filters compared by evaluating the BER versus OSNR 

behavior using numerical simulations. It was found that 

the variable-step-size LMS equalizer can achieve the same 

performance with a lower complexity, compared  to the 

traditional LMS algorithm. 
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